首先是發(fā)展三元化合物,如鎵鋁砷(gaalas),它能夠與砷化鎵(gaas)襯底晶格匹配,當鋁的成分增加時,發(fā)射波長藍移。然而,gaalas并不能夠與gaas的晶格非常好地匹配,因此最關鍵的一步是四元化合物,如ingaasp,這提供了匹配晶格間距以及所需波長的第二個自由度。mit林肯實驗室的j. jim hsieh實現(xiàn)了這一步,1977年他報道了室溫下運行的ingaasp激光器輸出1.25μm的激光。[10]隨后不久,也是在inp襯底上,成分略有不同的ingaasp激光器問世,應用于1.3μm和1.55μm的低損耗光纖窗口。通過調整四種元素的組分,ingaasp激光器的輸出波長覆蓋了一個重要的波長范圍(見圖3)。
通過優(yōu)化gaas襯底激光器的發(fā)射材料組分,可將其輸出波長拓展到紅光范圍,例如使用algainp可使輸出波長短至620nm。此后,1996年日亞公司(nichia)的shuji nakamura發(fā)明了氮化銦鎵(gainn)半導體激光器,激光跨入了光譜的藍光波段。[11]藍光半導體激光器目前屬于標準產品,但綠光半導體激光器仍然很難實現(xiàn)。在今年1月份的photonics west 2010會議上,startup kaai公司的nakamura報道已經開發(fā)出了523nm的ingan半導體激光器,填補了在半導體激光器在輸出光譜中的空缺。
1. p.a. franken et al, "generation of optical harmonics," phys. rev. lett. 7, p. 118 (aug. 15, 1961).
2. g. eckhardt et al, "stimulated raman scattering from organic liquids," phys. rev. lett. 9, p. 455 (dec. 1, 1962).
3. r.r. alfano and s.l. shapiro, phys. rev. lett. 24, p. 584 and 592 (mar. 16, 1970) r.r. alfano and s.l. shapiro, phys. rev. lett. 24, pp. 1217–1220 (june 1, 1970).
4. j.a. giordmaine and r.c. miller, "optical parametric oscillation in the visible spectrum," appl. phys. lett. 9, pp. 298–300 (1966).
5. p.p. sorokin and j.r. lankard, ibm journal of research and development 10, p. 162 (1966).
6. b.h. soffer and b.b. mcfarland, "continuously tunable narrow-band organic dye lasers," appl. phys. lett. 10, p. 266 (1967).
7. o.g. peterson et al., "cw operation of an organic dye solution laser," appl. phys. lett. 17, 6, p. 245 (1970).
8. p.f. moulton, "spectroscopic and laser characteristics of ti:al2o3," josa b 3, pp. 125–133 (january 1986).
9. s. lee et al, "integration of semiconductor laser amplifiers with sampled grating tunable lasers for wdm applications," ieee quantum electron. 33, pp. 615–627 (1997).
10. j.h. hsieh and c.c. shen, "room-temperature cw operation of buried-stripe double-heterostructure gainasp/inp diode lasers," appl. phys. lett. 30, p. 429 (apr. 15, 1977).
11. s. nakamura et al., "ingan-based multi-quantum-well-structure laser diodes," japan j. appl. phys. 2, 35(1b):l74-1 (1996).
12. j. faist et al., "quantum cascade laser," science 264 (5158), pp. 553–556 (april 1994).